ACID-BASE TITRATIONS

"Learn to recognize buffers! They lurk in every corner of acid-base chemistry."

Acid-Base Titrations

Solution of a base of known concentration is added to an acid of unknown concentration (or acid of known concentration added to a base of unknown concentration)

titrant

titration curve
equivalence point
half-equivalence point
$\mathrm{pH}>7$ titrating weak acid
$\mathrm{pH}=7$ titrating strong acid or base
$\mathrm{pH}<7$ titrating weak base
endpoint

strong acid or strong base titration overview classic Arrhenius neutralization reaction characterized by

1. strong acid (base):
2. strong base (acid) titrant:
3. total ionic equation:
4. net ionic equation (what is K ?):
5. titration curve - one inflection point (equivalence point)

weak acid or weak base titration overview weak acid (base) titrated with strong base (acid) characterized by
6. weak acid (base):
7. strong base (acid) titrant:
8. total ionic equation:
9. net ionic equation (what is K ?):
10. titration curve - two inflection points
half-equivalence point (perfect 1/1 buffer)
equivalence point, solution identical to conjugate base (acid) dissolved in wate)

To find the $\mathbf{p H}$ as a function of added titrant develop the exact expression (systematic treatment) for the hydronium (hydroxide) ion in terms of the concentrations of titrant and analyte.

SUGGESTION: do not use the dilution factor method of Harris Equation 11-1

Titration of a Strong Base with a Strong Acid, 11-1

EX: 50.00 mL of 0.02000 M KOH titrated with 0.1000 M HBr .
chemistry and equilibrium equations
charge balance
material balance
solve for $\left[\mathrm{OH}^{-}\right]$from $K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$

governing equations

base analyte: $\left[\mathrm{OH}^{-}\right]^{2}-\left(F_{\mathrm{KOH}}-F_{\mathrm{HBr}}\right)\left[\mathrm{OH}^{-}\right]-K_{\mathrm{w}}=0$
acid analyte: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}-\left(F_{\mathrm{HBr}}-F_{\text {кон }}\right)\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-K_{\mathrm{w}}=0$
without F_{HBr} (or F_{KOH}) term, equations are identical to systematic approach for strong base (or strong acid) dissociation

Equations simplify since for most of the titration K_{w} can be ignored so that the monitored hydroxide (hydronium) ion concentration is just the stoichiometric excess concentration.

$$
\begin{aligned}
& \text { base analyte: }\left[\mathrm{OH}^{-}\right]-\left(F_{\mathrm{KOH}}-F_{\mathrm{HBr}}\right)=\mathbf{0} \\
& \text { acid analyte: }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left(F_{\mathrm{HBr}}-F_{\mathrm{KOH}}\right)=\mathbf{0}
\end{aligned}
$$

EX 1. Determine the pH for the above example FIND EQUIVALENCE POINT
a) before any acid is added
b) when 3.00 mL of HBr is added
c) at the equivalence point
d) when 10.50 mL of HBr is added

Titration of a Weak Acid with a Strong Base, 11-2

EX: 50.00 mL of 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{p} K_{\mathrm{a}}=6.27$] titrated with 0.1000 M NaOH .
chemistry and equilibrium equations

charge balance
material balance
solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from K_{a}

governing equation

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left(F_{\mathrm{NaOH}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\mathrm{OH}^{-}\right]\right)}{F_{\mathrm{HA}^{-}}-\left(F_{\mathrm{NaOH}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\mathrm{OH}^{-}\right]\right)} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{3}+\left(K_{\mathrm{a}}+F_{\mathrm{NaOH}}\right)\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}-\left\{\left(F_{\mathrm{HA}}-F_{\mathrm{NaOH}}\right) K_{\mathrm{a}}+K_{\mathrm{w}}\right\}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-K_{\mathrm{a}} K_{\mathrm{w}}=0}
\end{aligned}
$$

(without F_{NaOH} term, equation is identical to systematic approach for weak acid dissociation)
Do not focus on cubic equation! K_{a} expression simplifies in most of the titration (buffer region) as $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are far smaller than F_{NaOH} and can be ignored. Recognizing that F_{NaOH} is just the concentration of conjugate base results in the normal buffer equation.

EX 2. Determine the pH for the above example FIND EQUIVALENCE POINT
a) before any base is added
b) when 3.00 mL of NaOH is added
c) at the equivalence point
d) when 10.10 mL of NaOH is added

Titration of Polyprotics, 11-4 (Review of Polyprotic Acids, 10-1 and 10-3)

The titration of systems having more than one titratable acidic or basic group requires an understanding of an intermediate form. We briefly encountered these when we surveyed polyprotic acids and will now return to the material in $\mathrm{H} \mathrm{Ch} \mathrm{10-1} \mathrm{and} \mathrm{10-3}$.

Consider determining the pH of $\mathrm{H}_{2} \mathrm{~A}, \mathrm{NaHA}$, or $\mathrm{Na}_{2} \mathrm{~A}$ which are all part of a diprotic system

$$
\begin{array}{ll}
K_{\mathrm{a} 1} & \mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \ll \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \\
K_{\mathrm{a} 2} & \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
\end{array}
$$

1) The pH of a solution of $\mathrm{H}_{2} \mathrm{~A}$, whose formal concentration is F , can be treated as if it were a monoprotic acid ($x=\left[\mathrm{H}^{+}\right]$).

$$
\begin{array}{ccc}
\mathrm{H}_{2} \mathrm{~A}(a q)
\end{array}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \ll \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\underset{\mathrm{HA}^{-}(a q)}{ } \quad x \quad K_{\mathrm{a} 1}=x^{2} /(\mathrm{F}-x)
$$

2) The pH of solution of a salt containing the basic anion A^{2-} (such as $\mathrm{Na}_{2} \mathrm{~A}$), whose formal concentration is F, can be treated as if it were a monobasic base ($x=\left[\mathrm{OH}^{-}\right]$).

$$
\begin{array}{cccc}
\mathrm{A}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) & <>\mathrm{OH}^{-}(a q)+\mathrm{HA}^{-}(a q) \\
\mathrm{FQ}-x & x & x & K_{\mathrm{b} 1}=K_{\mathrm{w}} / K_{\mathrm{a} 2}=x^{2} /(\mathrm{F}-x)
\end{array}
$$

3) The species HA^{-}(as in a solution of NaHA) is an intermediate form as it can behave as an acid ($K_{\mathrm{a} 2}$ expression) or as a base

$$
\mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{OH}^{-}(a q)+\mathrm{H}_{2} \mathrm{~A}(a q) \quad K_{\mathrm{b} 2}=K_{\mathrm{w}} / K_{\mathrm{a} 1}
$$

(conjugate base of $\mathrm{H}_{2} \mathrm{~A}$ in the $K_{\mathrm{a} 1}$ expression) and both its acidity and basicity must be taken into account. A systematic approach to equilibrium addresses this. We will accept the results of this derivation without going through the proof (analysis given on Harris p. 216) where it can be shown that, generally with $K_{1}=K_{\mathrm{a} 1}$ and $K_{2}=K_{\mathrm{a} 2}$

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{K_{1} K_{2}\left[\mathrm{HA}^{-}\right]+K_{1} K_{\mathrm{w}}}{K_{1}+\left[\mathrm{HA}^{-}\right]}}
$$

However, if one started with a solution of NaHA where the salt dissociates into its ions Na^{+}and HA^{-}in solution, then the principle species in solution would be HA- since the very small values of $K_{\mathrm{a} 2}$ and $K_{\mathrm{b} 2}$ insure that it has not reacted much. Therefore, the equilibrium concentration of $H A^{-}$can just be replaced by its formal concentration.

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{\frac{K_{1} K_{2} \mathrm{~F}+K_{1} K_{\mathrm{w}}}{K_{1}+\mathrm{F}}}
$$

Due to the very small value of K_{w} it is often found that $K_{\mathrm{w}} \ll K_{2} \mathrm{~F}$ so that the term with K_{w} can be ignored and we have

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{\frac{K_{1} K_{2} \mathrm{~F}}{K_{1}+\mathrm{F}}}
$$

Furthermore, if $\mathrm{H}_{2} \mathrm{~A}$ is not too strong of an acid or the concentration of HA^{-}, F , is not too dilute so that $K_{1} \ll \mathrm{~F}$ then

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{K_{1} K_{2}}
$$

or

$$
\mathrm{pH} \approx \frac{1}{2}\left(\mathrm{p} K_{1}+\mathrm{p} K_{2}\right)
$$

EX 3. What is the pH of a 0.050 F aqueous solution of NaHSO_{3} ? For sulfurous acid $K_{\mathrm{a} 1}=1.39 \times 10^{-2}, K_{\mathrm{a} 2}=$ 6.73×10^{-8}

To determine the pH in any of the species present in a triprotic system you still have $\mathrm{H}_{3} \mathrm{~A}$ treated as a monoprotic acid with $K_{\mathrm{a} 1}$ and A^{3-} treated as a monobasic base with $K_{\mathrm{b} 1}=K_{\mathrm{w}} / K_{\mathrm{a} 3}$

$$
\begin{array}{ll}
K_{\mathrm{a} 1} & \mathrm{H}_{3} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{~A}^{-}(a q) \\
K_{\mathrm{a} 2} & \mathrm{H}_{2} \mathrm{~A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{2-}(a q) \\
K_{\mathrm{a} 3} & \mathrm{HA}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{3-}(a q)
\end{array}
$$

$\mathrm{H}_{2} \mathrm{~A}^{-}$is an intermediate form sandwiched in between $K_{\mathrm{a} 1}$ and $K_{\mathrm{a} 2}$. Now there is another intermediate form HA^{2-}. If one started with a solution of $\mathrm{Na}_{2} \mathrm{HA}$ where the salt dissociates into its ions Na^{+} and HA^{2-} in solution, the principle species in solution would be HA^{2-} since the very small values of $K_{\mathrm{a} 3}$ and $K_{\mathrm{b} 2}$ insure that it has not reacted much. As done for the diprotic system, the equilibrium concentration of HA^{2-} can just be replaced by its formal concentration.

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{\frac{K_{2} K_{3} \mathrm{~F}+K_{2} K_{\mathrm{w}}}{K_{2}+\mathrm{F}}}
$$

As for the diprotic, if $K_{\mathrm{w}} \ll K_{3} \mathrm{~F}$ and $K_{2} \ll \mathrm{~F}$ then

$$
\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{2}+\mathrm{p} K_{3}\right)
$$

Titration of a Dibasic Base with a Strong Acid, 11-4

EX: 10.00 mL of 0.100 M base a) $\left(\mathrm{p} K_{\mathrm{b} 1}=4.00, \mathrm{p} K_{\mathrm{b} 2}=9.00\right)$ and b$)$ nicotine $\left(\mathrm{p} K_{\mathrm{b} 1}=6.15, \mathrm{p} K_{\mathrm{b} 2}=\right.$ $10.85)$ titrated with 0.100 M HCl .
chemistry and equilibrium equations

First buffer region	Second buffer region	Excess \mathbf{H}^{+}

$\mathrm{p} K_{\mathrm{a} 1}=\mathrm{p} K_{\mathrm{w}}-\mathrm{p} K_{\mathrm{b} 2}=-\log \left(1.01 \times 10^{-14}\right)-9.00=5.00$
$\mathrm{p} K_{\mathrm{a} 2}=\mathrm{p} K_{\mathrm{w}}-\mathrm{p} K_{\mathrm{b} 1}=10.00$
EX 4. Determine the pH for the above example
FIND EQUIVALENCE POINTS
a) before any acid is added (point A)
b) when 1.5 mL of HCl is added
c) when 10.0 mL of HCl is added (first equivalencepoint, point C)
d) when 15.0 mL of HCl is added
e) when 20.0 mL of HCl is added (second equivalence point, point E)
f) when 25.0 mL of HCl is added (excess strong acid)

Principal Species (10-4) and Fractional Composition Plots (10-5)

There are other ways of observing the effect of pH on a solution of an acid or a base. We briefly encountered the principal species (predominant form) when we surveyed polyprotic acids and it may now be more meaningful in the context of polyprotic tritrations. When used in conjunction with the Henderson-Hasselbalch equation, the principal species becomes even more apparent.

Fractional compositions were introduced when studying weak acids and weak bases. Their plots show how an acid (or base) systematically ionizes as the pH is increased by plotting the fractions of the various species present in solution. The $\mathrm{p} K_{\mathrm{a}}$'s are very apparent as the pH at which the fraction of the acid crosses the curve for the fraction of its conjugate base.

effect of K_{a} and dilution upon end point detection
As acid strength decreases or solution becomes more dilute the inflection at the equivalence point becomes less distinct.

Finding the End Point with a pH Electrode, 11-5 (Lab Experiment H_Exp 7) use of derivatives

end points given by

1. maxima of first derivative
2. where second derivatives pass through zero (generally requires drawing a straight line through two points on either side of zero to better determine the crossing point)

Table II-3 Computation of first and second derivatives for a titration curve

		First derivative			Second derivative	
$\mu \mathrm{L} \mathrm{NaOH}$	pH	$\mu \mathrm{L}$	$\frac{\Delta \mathrm{pH}}{\mu \mathrm{L}}$		$\mu \mathrm{L}$	
85.0	4.245	85.5	0.155		$\frac{\Delta(\Delta \mathrm{pH} / \Delta \mu \mathrm{L})}{\Delta \mu \mathrm{L}}$	
86.0	4.400	86.5	0.226	86.0	0.0710	
87.0	4.626	87.5	0.307	87.0	0.0810	
88.0	4.933	88.5	0.340	88.0	0.0330	
89.0	5.273	89.5	0.257	89.0	-0.0830	
90.0	5.530	90.5	0.189	90.0	-0.0680	
91.0	5.719	92.0	0.130	91.25	-0.0390	
93.0	5.980					

Finding the End Point with Indicators, 11-6
indicators are weak acids or bases

The Leveling Effect, 11-9

The strongest acid (base) that can exist in a given solvent is the acidic (basic) autoionization species of the solvent.

Leveling effect: Acids stronger than the hydronium ion or bases stronger than the hydroxide ion have the same effective strength in water, that of a strong acid or a strong base, since the equilibrium lies so far to the right that it cannot be accurately measured. In general all acids (or bases) stronger than the conjugate acid (or base) of the solvent have the same effective strength in that solvent and the solvent is said to have a leveling effect on those acids and bases.

Acidity Constants in Water at $25^{\circ} \mathrm{C}$				
Acid	Formula	Conjugate Base	$\mathbf{K}_{\mathbf{a}}$	pK,
Hydriodic	HI	$1-$	$\approx 10^{11}$	~-11
Hydrobromic	HBr	Br^{-}	$\Rightarrow 10^{9}$	-9
Perchloric	HClO_{4}	ClO_{4}^{-}	$\approx 10^{7}$	~-7
Hydrochloric	HCl	Cl^{-}	$\approx 10^{7}$	~-7
Chloric	HClO_{3}	ClO_{3}^{-}	$=10^{3}$	$=-3$
Sulfuric (1)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}	$=10^{2}$	$=-2$
Nitric	HNO_{3}	NO_{3}	≈ 20	≈-1.3
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1	0.0
Urea acidium ion	$\left(\mathrm{NH}_{2}\right) \mathrm{CONH}_{3}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)	6.6×10^{-1}	0.18
Iodic	HIO_{3}	$1 \mathrm{O}_{3}$	1.6×10^{-1}	0.80
Oxalic (1)	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}	1.23
Sulfurous (1)	$\mathrm{H}_{2} \mathrm{SO}_{3}$	HSO_{3}	1.5×10^{-2}	1.82
Sulfuric (2)	HSO_{4}^{-}	SO_{4}^{2-}	1.2×10^{-2}	1.92
Chlorous	HClO_{2}	ClO_{2}^{-}	1.1×10^{-2}	1.96
Phosphoric (1)	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.5×10^{-3}	2.12
Arsenic (1)	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	5.0×10^{-3}	2.30
Chloroacetic	$\mathrm{ClCH}_{2} \mathrm{COOH}$	$\mathrm{ClCH}_{2} \mathrm{COO}^{-}$	1.4×10^{-3}	2.85
Hydrofluoric	HF	F-	6.6×10^{-4}	3.18
Nitrous	HNO_{2}	NO_{2}	4.6×10^{-4}	3.34
Formic	HCOOH	HCOO^{-}	1.8×10^{-4}	3.74
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	6.5×10^{-5}	4.19
Oxalic (2)	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	6.4×10^{-3}	4.19

Acidity Constants in Water at $25^{\circ} \mathrm{C}$				
Acid	Formula	Conjugate Base	K	pK,
Hydrazoic	HN_{3}	N_{3}	1.9×10^{-9}	4.72
Acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}	4.74
Propionic	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$	1.3×10^{-3}	4.89
Pyridinium ion	$\mathrm{HC}_{5} \mathrm{H}_{3} \mathrm{~N}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$ (pyridine)	5.6×10^{-6}	5.25
Carbonic (1)	$\mathrm{H}_{2} \mathrm{CO}_{3}$	HCO_{3}^{-}	4.3×10^{-7}	6.37
Sulfurous (2)	HSO_{3}^{-}	SO_{3}^{2-}	1.0×10^{-7}	7.00
Arsenic (2)	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	HASO_{4}^{2-}	9.3×10^{-8}	7.03
Hydrosulfuric	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	9.1×10^{-8}	7.04
Phosphoric (2)	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	HPO_{4}^{2-}	6.2×10^{-8}	7.21
Hypochlorous	HClO	ClO^{-}	3.0×10^{-8}	7.52
Hydrocyanic	HCN	CN^{-}	6.2×10^{-10}	9.21
Ammonium ion	NH_{4}	NH_{3}	5.6×10^{-10}	9.25
Carbonic (2)	HCO_{3}^{-}	CO_{3}^{2-}	4.8×10^{-11}	10.32
Methylammonium ion	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	2.3×10^{-11}	10.64
Arsenic (3)	HAsO_{4}^{2-}	AsO_{4}^{3-}	3.0×10^{-12}	11.52
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{HO}_{2}{ }^{-}$	2.4×10^{-12}	11.62
Phosphoric (3)	HPO_{4}^{2-}	PO_{4}^{3-}	2.2×10^{-13}	12.66
Water	H.O	OH^{-}	1.0×10^{-14}	14.00
Hydrogen sulfide ion	HS ${ }^{-}$	s^{2-}	1.0×10^{-19}	19.00
Hydrogen	H_{2}	H^{-}	1.0×10^{-33}	33.00
Ammonia	NH_{3}	NH_{2}	1.0×10^{-38}	38.00
Hydroxide ion	OH^{-}	O^{2-}		

